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Porosity dependence of material elastic moduli 
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A new equation E :  Eo(1 + aP+ bp2)/(1 + cP), where Eand Eo are Young's moduli at porosity 
P and zero, respectively, and a, b, c are constants, has been derived. Our theoretical derivation is 
based on the dependence of sound velocity on the Young's modulus of the material. 

1. I n t r o d u c t i o n  
Ceramic systems are materials with high potential for 
engineering applications. Ceramics are usually pre- 
pared by sintering and so porous materials can occur 
if this process is incomplete, but they can be used in 
their own right in applications. Therefore, invest- 
igation of the effect of porosity on the mechanical 
properties of solids is of broad scientific as well as 
technological interest. A number of expressions for the 
relation between Young's modulus and porosity have 
been proposed. For example 

E = E o e x p ( -  bP) (1) 

E = E o e x p [ - ( b P  + cP2)] (2a) 

E = E o e x p [ - ( b P  + cP z + dP 3 + . . . ) ]  (2b) 

E = Eo(1 - f , P  + fzP  2) (3) 

E = Eo(! -- hP) (4) 

E = Eo(1 - aP) ~ (5) 

E = Eo 1 - l _ ( A + l ) p  (6) 

The number of each equation here is the same as the 
number of the corresponding reference [1 6]. Here 
E and E0 are Young's moduli at porosity P and 
P = 0, respectively, and other letters represent 
empirical constants. Among the above-mentioned 
expressions there are empirical ones [1,4], semi- 
empirical [2, 5] and more or less theoretically based 
relations [3, 6]. 

The direct relation between stress and deformation 
was used for derivation of the E P relation in the 
majority of the above-mentioned publications. Our 
derivation is based on the connection between the 
sound velocity and elastic moduli. We have calculated 
the sound velocity as a function of porosity and it 
enabled us to obtain the relation between Young's 
modulus and porosity on the form 

1 + aP + bP 2 
E = E o (7) 

1 + c P  

where a, b, r are constants independent of porosity, but 
dependent on the shape and size of the average pore as 
well as on the properties of the investigated material 
without pores. For illustration, we compare our Equa- 
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tion with the exact Wang's curve [2] obtained numer- 
ically for his theoretical model. These two curves agree 
very well over nearly the whole interval of porosity. 
Deviation of our curve from that of Wang occurs near 
the top of the porosity interval, when our treatment is 
not applicable. 

2. Calculat ion of sound velocity for 
simple model of porous material  

Because sound velocities provide an important con- 
straint on the elastic moduli of materials, we have 
theoretically derived the sound velocity as a function 
of porosity. The sound velocity can be determined if 
we know the dispersion relation of acoustic phonons 
in the long-wave region (this is c0 = ~0(k), for k -~ 0, 
where c0 is the frequency of sound and k is the wave 
vector) [7]. For small k, the dispersion relation of 
acoustic phonons has the form 

O) : e i - k  (8) 

where ci is the sound velocity. The subscript i deter- 
mines the polarization of the sound wave (longitudinal 
or transversal). 
Let 

( ul(n)~ 

u(n) = �9 u2(n)) 

u3 (n) / 

be the vector of deviation from equilibrium of an atom 
in lattice site n (in the case that it is a material with one 
atom in the elementary cell). In the case of more 
complicated materials with more atoms in the element- 
ary cell, the vector u(r) describes the deviation from 
equilibrium of the centre of mass of this elementary 
cell. 

We will study acoustic long-wave phonons (sound) 
and for this we are interested in movement of the 
entire elementary cell. This means that we are sugges- 
ting that the mutual positions of atoms in one element- 
ary cell are unchanging. Change of these mutual 
positions is connected with high-energy optical 
phonons, which are not of interest in this case. 

The equation for small deviations in an ideal crystal 
is [8] 

rail(n, t) = - ~ A(n - n')u(n',  t) (9) 
n ~ 
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where ,4(n - n') is a 3 • 3 matrix, called the dynamic 
power matrix, which describes the power with which 
an atom (or cell) deviated at point n' about u(n') acts 
on the atom (cell) at point n deviated about u(n); m is 
the mass of the atom (elementary cell). We are interest- 
ed in stationary oscillations, which means that the 
solution is obtained in the form 

u(n, t) = u(n)exp(-  k0t) (10) 

Hence, introducing Equation 10 into Equation 9 we 
obtain 

coZmu(n) = ~ A ( n -  n')u(n') (11) 

Now, we assume that there are Np pores in the mater- 
ial (system) centres (centres of mass) which are at 
positions R1, R2 . . . .  R,. These pores cause the fol- 
lowing perturbations to Equation 11: 

(i) they remove material (atoms) from the volume 
of pores and 

(ii) they change the dynamic matrix in their envi- 
ronment. Because of this fact, new terms are added to 
Equation 11 to give 

r ) _ __1 ~ A(n - n')o(n')  
/T/ n' 

= o 2 ~ a ( n -  R j -  ~)u(n) 
Rj 

+ U(n -- R j; n' --  Rj)u(n') (12) 
Rj  II' 

The first term on the right describes the influence of 
removing atoms from the pore volume (~ = position 
of lattice sites in the pore with regard to its centre of 
mass), while the second term describes the correction 
of the dynamic matrix. Green's function for Equation 
12 then obeys the equation 

c o 2 G ( n , n ' ) - l ~ A ( n - n ' ) G ( n " , n  ') 

= 5(n - n')T + o 2 ~ 5(n - Rj - g)d(n ,  n') 

+ ~ ~ l ~ ( n  - Ri; n " -  Rj)G(n", n') (13) 
Rj  I1" 

Writing G(n, n') as 

(~(n, n') = (~o(n, n') + (~z(n, n') (14) 

where Go(n, n') is Green's function for an ideal crystal 
(without pores), we obtain from Equation 13 

G(n, n') = Go(n - n') + y'  E G(n, n") 
n"  n "~ 

• [ ozZ y ,  5(n - a j  - - n') 
Rj 

• 5(n" - n'") + ~ 7 ( n "  - R~; n'" - R j) 
n j  

x 6o(n'" - n')] (15) 

It is convenient to work in the k space, so we will work 
with Fourier representation of Green's function. 
Using the relations 

1 
X(n, n') - N2 Z Z X(q, q')eiq'ne -iq'' ' 

q q' 

5266 

~,e/qn = NS(q) 
n 

where N is the number of elementary cells in the whole 
crystal and 6(q) is the Kronecker delta, we have 

(~(kl k') = N(~o(k)a(k - k') + ~(~(k,k '  + q) 
q 

X G o ( k ' ) o  2 E E exp[ -- iq '(Rj + ~)] 
j ~ N 

+ ~ (~(k, k' + q)U(k' + q) 
q 

x ~ exp[ - iq.(Rj + ~)] Go(k') (16) 
j N 

(~(k, k') is a function of the concrete positions of 
centres (centres of mass) of pores R1, R2 . . . .  , RNp. 
We are interested in the average Green's function 
(G(k, k')) [9] 

~, (~(k, k', {Rj}) 
{RA ((3(k,  k')) = 

N{Rj} 

where summation over all possible configurations of 
centres of mass pores is implied and N{Rj} is the 
number of these configurations. 

If we assume that each pore is uncorrelated with 
any other, then 

(G(k, k')) = 

Z , ~  . . . . .  Z ( - ~ G ( k , k , R 1  . . . . .  RNp ) (17) 
R~ R 2 Rup 

where summation is now implied for each Ri Over all 
lattice positions. 

We can see that in the iteration series for (~(k, k') 
created by Equation 16, we must average the products 
of type 

-) 
where the number of these terms is M. The average 
value of the term e iq'Rj is (e iq'kJ) = 5(q, 0). 

The most important contribution to the sum of 
averaged products of terms e iqKj in Equation 18 is 
provided by the term in which every R~ is different (or 
where are the most different R j, in the case that 
M > Np). We suppose that Np is large enough but 
Np << N. The contribution is proportional to (l/N) M, 
so we are interested only in the members with small 
M (M < Np) which give the largest contributions. 

For large N (i.e. a large sample) we can then write 

Np~ Np8 , Np~ ,, 

( q ) u -  ( q ) ' " U -  ( q )  

= P'5(q)P'5(q') . . .  P'5(q") (19) 

After averaging, we can again sum iteration series and 
we obtain a closed equation for the averaged Green's 



f u n c t i o n  ( G ( k ,  k' ) ) :  

((7(k, k')) = N6(k - k') 

U(k, k ' ) p ) l _  z 
+ 

(20) 

Here P is the conventional porosity. 
Taking into account the symmetry of U(n, n') and 

the fact that we are interested in the long-wave (k ~ 0) 
we obtain for /J(k, k) the expression 

/J(k, k) _ N ~  21( ~ ,  ,, U(n' n')[ek'  ( n - - N ~ -  n')] 2) k2 

= + a{e }k 2 

where ek is a unit vector in the direction of wave 
propagation and Nr is the number of elementary cells 
in one pore. We suppose that the size of the pore is 
much less than the wavelength of sound (k ~ 0), and 
that the polarization of wave motion is unchanged in 
pore's environment in comparison with the matrix 
without pores. We can then use the scalar model. 
Hence Equation 20 is reduced to 

NS(k - k') (21) 
(G(k, k')) = o2 _ ci(0)2 k2 _ o)2p _ o~ipk2 

where the subscript i specifies the polarization of 
sound waves (longitudinal, transversal) and q(0) is the 
velocity of this wave in the environment without 
pores. Finally, the poles of Equation 21 now corres- 
pond to the dispersion relation 

where ai = ~i/c{(O). For sound velocity in the porous 
environment it follows (i = L, T) that 

(1 + aiP) 1/2 
ci(P) = \ T ~ -  ] q(O) (22) 

For concrete calculation of ci(P) it is import__ant to 
know the perturbation of the dynamic matrix U(n, n') 
caused by the pore with its centre (centre of mass) at 
R = 0. Here the parameter a~ depends on the shape 
and size of pores, but it is independent of their num- 
ber. If we are interested only in the relations between 
the sound velocity and porosity we can consider ai as 
a constant. If we know the sound velocity we can 
obtain the elastic moduli of material [10] 

(aL -- aT)P + CY0[1 + (2aT -- aL)P] 
cy = (23) 

1 + (2aL -- aT)P + 2cY0(aT -- aL)P 

(1 + aTP) 1 + P 
�9 1 3 " 0  

E= Eo 
1 + [ 2 a e ( 1  --  CYo) --  aT(1 --  2 ~ o ) ] P  

where Eo and Cyo (E and ~) are Young's modulus and 
Poisson's ratio at P = 0 and some volume fraction of 
porosity P, respectively. Equation 24 can be written in 
the simple form of Equation 7. 

3. Discussion and conclusion 
We have derived here the relation between Young's 
modulus and the porosity of a material (E P relation) 
using a theoretical approach. Our result is based on 
a microscopical model and on corresponding mathe- 
matical methods. In contrast to the majority of exist- 
ing more or less theoretical derivations of the E P 
relation, which are based on defining an expression for 
Young's modulus (relation between stress and de- 
formation); a dependence of sound velocity on 
Young's modulus is used in our case. 

The sound velocity as a function of porosity and 
other model parameters was obtained from the disper- 
sion relation (dependence of frequency of sound waves 
on their wave vectors) in the long-wave region, and the 
required dispersion relation was provided by the poles 
of Green's function for a corresponding microscopical 
equation of motion for small deviations from equilib- 
rium positions of material structural units. We as- 
sumed that pores are mutually uncorrelated, that they 
have the same size and form and that they are ran- 
domly distributed in a homogeneous matrix. A change 
of porosity is assumed to be a change of the number of 
pores, while their form and size remain unchanged. 

The resulting relation between Young's modulus 
and porosity (Equation 7) is 

1 + aP + bP 2 
E = Eo 

1 + c P  

where a, b and c are quantitie:~ independent of poros- 
ity, but dependent not only on material parameters 
but also on the size and form of the average pore. 

Our E-P relation (Equation 7) becomes identical 
with some relations proposed by other authors (see 
Section 1) for special choices of the parameters a, b and 
c; but in general (if no constraints are set on a, b, c), 
our result is different. 

To obtain a first checking of the applicability of our 
result, we compare Equation 7 with the exact Wang's 
curve [2] obtained numerically for his theoretical 
model. In Wang's model pores are identical and they 
are arranged in a simple cubic lattice. As the porosity 
increases, the size of pores increases too (their number 
remains unchanged). This model is also able to de- 
scribe the transition from isolated pores to connected 
ones. 

The behaviour of pores with change of porosity is 
different in Wang's model and in our model, but 
nevertheless our curve fits Wang's result very well over 
nearly the whole porosity range (ever better than 
Wang's Equation 2a with three parameters) (Fig.l, 
curve 1). Deviations occur near the top of the porosity 
interval, e.g. for porosity corresponding to intercon- 
nected pores. 

However, comparison with experimental results is 
important. Therefore, the aim of our further investiga- 
tion wil! be to compare the theoretical E P  depend- 
ence (Equation 7) with experimental data for systems 
obeying convenient conditions for the behaviour of 
porosity (changes of the number of pores, without 
change of their shape and size). 

From the theoretical point of view, further invest- 
igation is needed for calculation of concrete value of 
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Figure 1 Young's modulus as a function of porosity: (1) ideal case, 
(2) non-ideal case (shear effect), (3) non-ideal case (combined shear 
and hinge effect). (�9 Exact solution obtained numerically from 
Wang's theory; solid curves obtained from Equation 7 with three 
constants a, b, c; and for comparison the broken curve obtained 
from Equation 2b with three parameters b, c, d. 

the quantities a, b, c in Equation 7 for a given shape 
and size of average pore, or for some distribution of 
pore size and shape. 
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